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The problem of joint motion of a solid body and viscous incompressible fluid 
which partly fills a cavity in the body under conditions of total weightlessness 

is considered. 

This problem was analyzed in Cl-33 without taking into account surface tension 
under conditions of normal gravity. Forced rotation of a viscous fluid with surface ten- 
sion was considered in [4,5], 

I.. St ate m en t of the problem. Let asolid body with a cavity 
partly filled with a viscous incompressible fluid rotate around a fixed point 0 under 

conditions of total weightlessness. 

The slow motion of fluid in the cavity is defined by the Navier -Stokes equations 
which in the system of coordinates 0~lxzx3 fixed to the body is of the form 

(1.1) 

divu = 0 in St 

where u is the vector of fluid particle relative velocity, e is the body angular accel- 
eration vector, r is the radius vector of fluidpaticles relative to point 0, p is 
the pressure in the fluid, p is the fluid density, Y is the kinematic viscosity coeffic- 
ient, and Q is the region occupied by the fluid in equilibrium. 

The boundary condition aIong the wetted part of the cavity wall s is of the form 

u=o ons (1.2) 

In the curvilinear system of coordinates (El, Es, Es), such that point (El, &, 0) 
lies on r,, and coordinate &, is read along the outer normal TZ to I’0 , with t’ne 
Lami coefficient ha = 1, the boundary condition at the free surface of the fluid is 

of the form [4] 

%,3 i- %,l = u2,3 + %,2 = 0, s 
u~dr=o (1.3) 

ro 

p-2pv$f =aBIN, '; = us on r0 

where u is the surface tension coefficient, N is the deviation of the fluid free surface 
in motion from that in equilibrium r. , and B, is the differential operator of the 
elliptic type 

BIN = UN - ArN -- I ;,[ 
s 

(aN - ArN) dI’ 
* 
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a = - (k12 + k22 + a-lap, /an) 

where kr and k, are the principal curvatures of surface rO of the fluid in equili- 
brium, and Ar is the Laplace - Beltrami operator. 

It is assumed, as in [4,5], that the free surface l?a has no common points with 

the cavity wetted surface s , and that the fluid state of equilibrium is stable, i. e. 

that operator B1 is positive definite. 
Under conditions of total weightlessness (g = 0) the equation of motion of the 

body with fluid is of the form [2,3] 

J.efpS [rx~]dQ=O 
n 

(1.4) 

where J is the tensor of the moment of inertia of the system “body + fluid” relative 
to point 0 , and g is the acceleration of gravity. 

E~minating e in Es. (1.1) using Eq. (1.41, we obtain 

(1. 5) 

We shall investigate problem (I.. 1) -( 1.3), (1.5) of determination of the motion 
of fluid in the joint motion of body and fluid with initial conditions 

u (0) = ua, N (0) = NO (1,6) 

Acceleration of the body is determined by the known velocity of fluid using form- 

ula J1.4). 

2. Reduction of the problem to operator equat- 
i o n s. For analyzing the problem equations we introduce the functional spaces con- 

sidered in [S]. We denote by Ws Go ( Q) the closure in the norm of the Sobolev space 

IV,’ (a) of the totality of solenoidal vector functions v from wsr (Q2) which vanish 

in the neighborhood of surface S . By LsO (Q) we understand the completion of 

W2V (Sz) by the norm of space L, (Sz). The orthogonal complement to L,” (Q) 
in L,” $2) is the closure of vector functions that are potential in 52 and equal zero on 

r. (see, e.g., [5] ). Note that for vector functions from L,’ (Q) the normal com- 

ponent on S is zero. 
Using the method set forth in [5, S] we reduce the second of Eqs. (1.1) and Es. (1.5) 

with boundary conditions (1.2) and (1.3) to two operator equations in Ls (52) and 

Wz’_l/* (ra) of the form 

(I + B) dul& + VAV = 0 (2.1) 

Y &p/c& + a&r (v + T*) = 0 

u=v+Tp, Bv = II tr x pJ-‘i [rl x v] d&2} 

where B is the carry operator [7], n is the operator of orthogonal projection of spa- 

ce L, (a) on subspace L,O (a), I? is the operator of the vector function trace on 

the free surface r. , and A and T are. operators generated by the auxilliary bound- 

ary value problems described in [5,6]. Operator A is self-conjugate and positive 
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definite in L,” ($2)) and has a completely continuous inverse operator of class or, 

(%l > “4). The linear operator T continuously acts from ws-‘/* (r,) in W&a 

(Q). 
As in [5], we understand Wsv (I’,) to be the complex Hilbert space of Sobolev 

-Slobodetskii with norm 

Il4lr” = c Ilu’“‘ll” + 
- 

F v 1 u(q) (21) - dq) @a) I” (jr, (jr, 

laldlrl IQ =tr1 l-0 
, %. _ Z. 12+w+w) 

0 

s um = 0 
I-0 

where [rJ is the integral part of y, IV,+’ (I’,) is the space conjugate with wsy 
(&,) with respect to the scalar product in the space lVsO (I’,) = L, (I?,) 0 (1). 

3. The theorem of existence and uniqueness of 

solution. It was shown in [7,8] that the operator (I + B)-’ is the self-conjug- 
ate positive definite inverse operator of operator (I + B) . 

Below we shall use the following lemmas proved in [5]. 

L e m m a 1. Operator C = rT isothermally maps Ws+ (I?,) on Ws*/z (r,), 
whose contraction on IV,’ (I’,) = L, (I’,) 0 {I} is a self-conjugate positive entire- 
ly continuous operator acting in W,” (r,). 

L e m m a 2. Operator B, = C’I*BIC’I~ is unboundedly self-conjugate and 
positive definite in IV,’ (r,), and D (B,) = WS’ (rob Operator BzV1 belongs 

to class crq for 9 > 3. 
Lemma 1 implies that operator c has the inverse operator C-’ which is self-con- 

jugate and positive definite in Ws” (ro). A direct check shows that IV,% (To) is 
the determining region of operator C-‘lz. 

Applying operator (1 + B)-l to both sides of Eqs. (2.1) we obtain 

$ + y-1o’laA’I:TC+ 2 + v/l’/2 (I + B)-1 A% = 0 

y-lo% $. + v-loC’/x&r (A-‘/zs + v-lo’ltTC-%q) = 0 

s = A%, q = viplaC’/zcp 

(3.1) 

We consider the obtained system as a single ordinary differential equation of the 
first order in Lc (52) $ W,‘l: (I’,), acting on which with the operator 

I 

In _ A’lQ”C”Ia 

0 va-w~ 

we obtain an equation of the form 
ax/& + M,x + K,x = 0 (3.2) 

Ml = I VA’/’ (I + B)-IA’12 

0 v-:Bs~’ x = li;i 

” = II 

v-laA’IzTB,rA-‘12 
;hC’,.B rA-‘1% 

_ v-2~‘laA’/~TC-‘i~ B2 

1 0 ii 
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where Ia and Ir are unit operators in Lao(Q) 

The initial conditions become 
and W,ti~ (r,) , respectively, 

x (0) = X& = co1 {A’/* vg, cP~‘VC’hp,), u,, = va 4 Tcp, (3, 3) 

T h e o r e m 1. 

W 8 %,yqJ, 

Equation (3.2) is an abstract parabolic equation in space L,’ 
whose Cauchy problem is uniformly correct, The related semi- 

group is analytic in the sector containing the positive axis. Problem f3.2), (3.3) has 
a weakened solution for any x0. 

P r 0 0 f. Operator A-*il(l + B) A-‘/S is bounded, self-conjugate, and positive, 
hence its inverse operator A*/% (1 + ~)-r~“/z 

L,“(Q). 

is self-conjugate positive definite in 
The last of formulas (2.1) implies that the region of values of operator B 

is the same as the region of values of the projection operator III on the set of linear 
~~~0~ of the form r X 1, hence according to [9] the region of vaIuesofB consists 

of functions that are as smooth as desired. It follows from this that the region of 
values of operator A-“z(l + B)A-‘12 consists of functions v E Wsa(Q), and the 
determining region of operator A’/¶ (I + t3)-” A’:2 is wss(Q) n Tysl~O (Q). 

Using operator & we form the scale of Gilbert spaces [XI, 111 

H,(F) = D f&Y 

By Lemma 2 this scale applies to Gilbert spaces that join i;ciz’(~,) and Wsl(I’,>. 
From this and [ll] follows that for y < 1 the Sobolev spaces W,Y (l’,) ate the 
same as spaces HV (I?,). 

Since operator Bs is self-conjugate and pcwitive definite in Ha(r,) =-? ws”(ra), 

hence according to [ll] it is self-conjugate and positive definite also in Hi/, (TO) = 
~~‘2~~~~. 

Thus operator i%fr is self-conjugate and positive definite in &“(fz) @?I ws*j~ (r,). 

Hence the semigroup generated by the equation dxldt = - Mm, is contractive and 
analytic in the left half-plane (see [12] ), 

Let us represent operator Ki in the form 

Tizz - 
I 

GV”-T,i --CI%“Tis 

CT’~~T~~ 0 j/ 
T 11 = Td’,r, T1, = A’laTC-‘h, Tal = B,C-‘M’A-“(I +B) A-“/* 

Operator Kr is entirely subordinated to operator MI + if operator Tr is entir- 
ely continuous in the space L,” ($2) 6 W~*‘~(r~) (see, e. g, , ll2] 1. ‘I’his statem- 

ent follows from the following lemma. 
L e m m a 3. Operator Trs acts entirely continuously from Ws‘iz(r& in La‘ 

(0) . To prove this let us assume that P is a bounded set in W,“z (To). It fdkws 
from Lemma I that operator F’/b transforms p into a bounded set in W2” (&) and 
into a compact set in Wa % (r,) by virtue of complete continuity of the imbedd~ng 

operator. The above properties of operators T and A imply that operator Tc’!~ 
transforms P into a compact set in Wsr(a) 1 and operator A”aTC4’* transfom P 
into a compact set in Lz”(S2). This implies total continuity of operator A”zTC-“~ 
from W,% (J?,) to L,O ($2). The lemma is proved. 

L e m m a 4. Operator TX, acts entirely continuously from L,“(SJ) to&to (Q). 
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P I o o f. Since the region of values of operator B consists of functions that are 
as smooth as required operator (I -/- B) A-‘/% is bounded as an operator from L,’ (a) 
in ws’ (n) and by the theorem on imbedding is entirely continuous as an operator 
from L,“(Q) in Ws”~(Q). Operator BaC-‘l~I’A-l = C’/zBzI’A-lL is bounded as 
an operator from JVs”z (a) in Ws’Iz (I’,) , as implied by the mapping chain 

ws’:, (S)A_1: ws*J’ (9) -X w,2 (r,) -fl: w,o (r,) c-fi: W$$ r o) 

Continuity of the operator in the first link was shown in [13], in the second from 
the theory of traces El33 and in the third from the estimates [M] 

fIB?vll~,2~r,~ < cllvll~~~~~,~ for v E K’O (ra) 

The operator in the fourth link is continuous by virtue of Lemma 1. 
Thus operator 2’11 represents the product of the entirely continuous operator (I + 

B) A-VI from L2* (Q) in IV;/* (ft) , the bounded operator B,C-‘lG4-’ from 
W2”‘p (n) in TV,‘/9 (I?,) and of the entirely continuous operator T1, from rjv,l!z 
(To) in L,’ $2) , hence it is entirely continuous as an operator from L,“(Q) in 

GV-& The lemma is proved . 
L e m m a 5. Operator Tsl 

(G). 
acts entirely continuously from L2’(Q) inlV2’~~ 

Proof of this lemma follows from the proof of Lemma 4. 
The total subordination of operator KI to operator Mr is proved. Then all asser- 

tions of Theorem 1 follow from [12). 
R e m a r k. For a specified intitial distribution of fluid velocity u0 in region B 

and initial deviation of the free surface N,, from the equilibrium surface (1.61, p. 
on surface r. at the initial instant of time is determined by the second of formulas 
(1.3). As shown in [S], the initial values VO and w. = T cpo are, consequently, 
determined by expansion (3.3) in u. and po. 

4. Normal o s c i 11 a t i o n s. Let us consider normal oscillations of a 
VISCOUS fluid in the simultaneous motion of the system body + fluid under conditions 
of total weightlessness. We seek a solution of the problem of the form 

(n, PI W = EM f%, Pr, N,) 
where ul, PI, and Nr are functions of coordinates only. For the quantities s1 = 
A”VI and ql = cr’l~@ltcp, we obtain the problem 

YSI = LFl(sl + Y-WT~~~~) 

a’h-‘Txaq~ = G (h~)-~F,(s~ + dW1T12q~) 
F1 = A-‘/* (I + B) A-%, F, = A’f:TBrI’A-‘1s 

(4.1) 

Using the notation %r = sI -/- a%~~~T,,rt, we have 

t1 = hv-‘F& + cr (hv)-‘F,%, (4. 2) 

Multiplying both sides by 
Fl 

%I and noting that owing to the positiveness of operator 
we have (FI%z, %I) > 0 and owing to the positive definiteness of operator BI, 

(F&I, %I) = (BJ’A-‘l*& J?A*&) > 0 . we obtain 
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which shows that h has a positive real part. 

To prove the completeness of the system of the eigen- and adjoint vectors of prob- 
lem (4.1) we use Eq. (3.2) which for normal oscillations is of the form 

L e m m a 6, Operator &’ is entirely continuous in Ls”(Q) @ Ws’” (I’,). 
P I o o f. By Lemmas 3 and 5 operator T la is entirely continuous as an operator 

from Wall2 (ra)in La?&?), and operator Tax is entirely continuous as an operator 
from Leo (Sz) in I%‘e’j* (I’,). It remains to show that the operator is 
entirely continuous in W z”;(r~). 

TslTla 
It follows from the proof of Lemmas 3 and 4 that 

it is the product of the entirely continuous operator TC”l~ from W,“r (I’,) in Wa”z 
(a) of the bounded operator (I + B) in Wa’l. (Q) , and of the bounded opera- 
tor B,C-‘~~FA”l from Ws*il (Q) in W%‘Iz (r,) , Hence it is entirely con~nuous 

as an operator from ws*l* (r,) in Ws’/) (pa). The lemma is proved. 

As shown above the self-conjugate operator A-l is entirely continuous and bel- 
ongs to class op (v q 1 ‘/‘a). Operator F1 has the same properties. By Lemma 2 

and [xl] operator Ba-r is entirely continuous, self-conjugate in Wlil (Fe) , and 
belongs to class oq (b’q > 3) . This implies that operator M1-l is self-conjugate, 

entirely continuous in Lao (Sz) @I Wi I* (I’,) , and belongs to class op with 4 > 3. 

Theorem 2. The sptem of eigen- and adjoint vectors of problem (4.1) of 
viscous fluid normal oscillations in the simultaneous motion of the system body + fluid 

under conditions of total weightlessness is closed in LaO(S1) @ Wa’/’ (w . All 
normal oscillations for any e (> 0) are damped, except possibly a finite number of 
those whose ar~rn~t is comprized within the angle - 8 < arg h < e. The spect- 
mm ofthis problem is discrete and has a bunching point at infinity. 

Theorem 2 flows from Keldysh’s theorem [151. 

The author thanks S. G. Krein for valuable guidance and constant interest in this 

work and, also, N. D. Kopachevskii for useful remarks, 
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